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ABSTRACT 

James Webb Space Telescope Optical Telescope Element (OTE) is a three mirror anastigmat consisting of  a 6.5 m 
primary mirror (PM), a secondary mirror (SM) and a tertiary mirror. The primary mirror is made out of 18 segments. The 
telescope and instruments will be assembled at Goddard Space Flight Center (GSFC) to build the Optical Telescope 
Element-Integrated Science Instrument Module (OTIS). The OTIS will go through environmental testing at GSFC before 
being transported to Johnson Space Center for testing at cryogenic temperature. The objective of the primary mirror 
Center of Curvature test (CoC) is to characterize the PM before and after the environmental testing for workmanship. 
This paper discusses the CoC test including both a surface figure test and a new method for characterizing the state of the 
primary mirror using high speed dynamics interferometry. 
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1. INTRODUCTION 
James Webb Space Telescope (JWST)1 is scheduled to be launched in 2018. The JWST telescope2,3 is a three mirror 
anastigmat comprised of a segmented primary mirror, a convex secondary mirror, and a tertiary mirror.  Additionally 
there is a flat fine steering mirror used to maintain alignment of the telescope to the instrument module.  Figure 1 shows 
an artist rendering of the completed telescope.  In order to fit within the rocket fairing the entire assembly will be folded 
up and then deployed on orbit.  For this reason the primary mirror is segmented consisting of 18 hexagonal mirrors each 
approximately 1.5 meters point to point.  The mirror segments are constructed from a lightweight beryllium substrate 
with both a radius-of-curvature actuation system and a six degree-of-freedom hexapod actuation system. Once completed 
the eighteen Primary Mirror Segment Assemblies (PMSAs) are mounted to the primary mirror backplane support 
structure, a graphite/epoxy composite truss structure.4 All mirrors are coated with protected gold. 

 
     Figure 1:  Artist rendering of JWST telescope 
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The telescope will be assembled and instruments installed at NASA Goddard Space Flight Center clean room facility. 
The Integrated Science Instrument Module (ISIM) consists of four science instruments in its instrument housing which is 
attached to the backplane of the primary mirror. The primary mirror will be measured before and after environmental 
exposure statically by measuring the surface figure of each segment and dynamically by measuring, primary segments 
‘surfaces’ to gain insight into the state of the assembled telescope. This includes Power Spectral Densities (PSD), spatial 
modes, and phase and modulation transfer functions of the full telescope assembly. State of the telescope assembly will 
be measured using a high speed interferometer. This interferometer has been designed and built in collaboration with 4D 
Technology5. Environmental exposure simulates the launch conditions for the telescope assembly. 

2. TEST OVERVIEW 
The primary mirror segments will be tested statically and dynamically by measuring the surface of each segment using a 
Computer Generated Hologram (CGH) at Center of Curvature (CoC) of thepPrimary mirror. Primary instrument to 
perform static and dynamics measurements is a high speed interferometer designed and fabricated by 4D technology. It 
is equipped with a high power 25 mW He-Ne laser with path matching capability to keep the integration times short. The 
interferometer captures all of the phase shifted interferograms in a single camera frame.  The heart of the system is a 
pixel-wise phase-shifting element in which each pixel has a unique phase-shift. The camera is a high-speed CMOS 
camera that is capable of capturing frames at a rate greater than 2KHz. The frame rate is a function of the size of the 
region of interest selected for data transfer. Interferometer can take data at 1 KHz for 720x720 pixel formats. Higher 
speed of 2.25 KHz can be achieved at 400x400 pixels formats.  This interferometer allows rigid body measurements to 
get the modes and change in the mode shapes and frequencies. It also allows deformation measurements such as 
astigmatism at 250 Hz and deformation due to inertia of the mirror to rigid body motions.  

The static surface measurements of the segments will measure changes to the surfaces before and after environmental 
vibration and acoustics tests. Predicated change to astigmatism of the segment is about 10 nm RMS. The static surface 
measurements are fit to Zernike’s before and after environmental test. Repeatability of static measurements in the clean 
room sets the noise level for this test. Repeatability of the static measurements is a strong function of temperature and its 
gradients. Test on JWST flight spares has been done to measure the noise level in the clean room for the static 
measurements. The surface RMS noise floor is 10 nm and astigmatism RMS noise level is 20 nm. This is achieved under 
tight temperature control in the clean room. 

 The dynamics test is done by stimulating the telescope assembly at several places and measuring the dynamics behavior 
of the primary segments at CoC through a CGH, just like the static case. The stimuli are applied at the hard points of the 
telescope assembly. Vibration levels are in microns and the frequencies are spread over 3Hz to 250 Hz. Both random and 
sine vibration are measured. PSDs, spatial modes, and phase and modulation transfer functions are measured. PSDs per 
pixels are measured by temporal phase unwrapping individual pixels and FFT (Fast Fourier Transform) the displacement 
in time. This is also normalized to PSDs of the forcing function of the stimuli. Spatial modes are measured by creating 
surfaces by temporal phase unwrapping at each time. Surfaces are fitted to Zernike’s. FFT  each coefficient of Zernike’s 
are normalized at each frequency to amplitude and phase of the force function. These normalized amplitudes and phases 
are compared before and after environmental test. Individual modes, rigid body and deformation modes are observed by 
temporal phase unwrapping of each pixel and observing all the pixels at the same time. These modes include absolute 
piston and also deformation at point of contacts between back structures and the mirror due to mirror inertia as they 
move as a rigid body. Forcing function of the stimuli is used as a reference to tie the segment measurement together as a 
measure of backplane structural modes. Although segments are measured one at the time using the phase and magnitude 
of the forcing functions as references enables observation of the backplane modes. Transfer functions are used to 
measure the changes to load path and stiffness of the backplane before and after environmental test.  

2.1. Metrology Validation  

The primary mirror segments are each off-axis sections of the parent conic.  There are three prescription types defined as 
A, B, and C segment type.  For the JWST telescope one spare primary mirror segment was manufactured for each of the 
three prescription types.  The A segment spare is also called the EDU or engineering development unit, as it was the first 
JWST primary mirror segment built.  This mirror has been through all processing including cryo-null figuring, a process 
where the mirror is polished for optimized cryogenic performance, and gold coating.  The C segment spare has been 
polished but not cryo-null figured or coated.  Finally, the B spare has not been polished and is in a rough ground state.  In 
order to develop and validate the metrology described in this paper the A segment spare or the EDU was used. Further 
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testing will be done using C spare mirror.  The EDU was mounted on a test stand within the Spacecraft Systems 
Development and Integration Facility (SSDIF) cleanroom at NASA/Goddard Space Flight Center.  This test stand was 
originally used at SSG-Tinsley for ambient optical metrology during the polishing process.  Figure 2 shows a picture of 
the EDU and C7 mirrors on the test stand. 

 

 
 

     Figure 2:  EDU & C7 mirrors on test stand. 

The optical test layout employed for primary mirror testing is that of a classical interferometric center of curvature test.  
This test involves the placement of an interferometer with a diverging lens such that its focus is coincident with the 
center of curvature of the mirror under test.  If the test mirror were a sphere then all rays would be normal to the mirror 
surface.  However, as previously described the JWST primary mirror segments are not spheres but rather off-axis 
aspheres.  Therefore, a CGH (computer generated hologram) is required to convert the spherical test beam to an aspheric 
one.  When the mirror is placed at the correct location relative to the CGH then all test rays are normal to the mirror 
surface.  Essentially the CGH is acting as a portion of a diffractive null lens allowing for full interferometer spatial 
resolution of an off-axis segment.  Figure 4 shows a simplified layout of the test setup. 
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      Figure 3:  optical test layout 

The six degree of freedom alignment of the CGH to the mirror segment is critical and is set using several different 
metrology devices.  First the CGH is aligned to the interferometer using features built into the CGH design.  Once set the 
CGH-to-interferometer alignment remains fixed and is moved as a unit.  This is accomplished by mounting both pieces 
of optical equipment on a breadboard which itself rests on top of a six degree of freedom rotopod built by Mikrolar Inc. 
The rotopod provides for a good range of motion with a high load capacity.  The stage was also designed to give micron 
and sub arcsecond level motion resolution. 

The alignment of the CGH to the mirror segment is broken up into three components.  The tip/tilt of the mirror is aligned 
using interferometer tilt fringes as feedback. The decenter and clocking of the mirror relative to the CGH is achieved 
using an alignment camera system.  This system is mounted on the same breadboard as the interferometer and consists of 
a camera attached to a Meade telescope.  The system relies on additional features built into the CGH diffractive pattern 
as well as fiducial targets mounted to the sides of the mirror.  The final alignment degree of freedom is the axial spacing 
between the mirror and the CGH.  This distance is measured using a Leica ADM (absolute distance meter) and set 
accordingly.  Figure 4 shows a modeled representation of the optical metrology setup. 

The radius of curvature of the primary mirror is approximately 16 meters.  This is the distance that the mirror must be 
positioned away from the interferometer in a center of curvature test.  A long optical path test such as this leads to a 
number of challenges, the most notable of which is turbulence and stratification within the air path.  This was especially 
challenging for the EDU test as the optical setup was positioned right next to the cleanroom air outlet.  However, we 
were able to work closely with the Spacecraft Systems Development and Integration Facility (SSDIF) facilities personnel 
to optimize the thermal environment.  This was also very important as the primary mirror segments are designed for 
cryogenic use.  During room temperature testing the thermal gradients within the mirror assembly cause very large and 
measureable changes to the figure, radius of curvature, and astigmatism contributions.  In order to minimize these effects 
the temperature within SSDIF needed to be very stable.  A rate of change requirement of less than 0.05C air temperature 
delta per 10 minutes was established as the limit.  This keep mirror gradients, and thus mirror deformations, within 
acceptable values.  Figure 3 shows the test layout and location within the cleanroom. 
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     Figure 5:  Results of EDU Reproducibility Testing. 

Reproducibility testing showed that metrology was good to 8.1 nm rms figure and 27.5 nm rms astigmatism worst case.  
The goals were 15 nm rms and 25 nm rms respectively. We will do further testing in the area where the OTIS level 
testing will occur in the cleanroom. We expect that the measured reproducibility numbers will improve due to better 
thermal control, especially in the case of the astigmatism. 

In addition to reproducibility measurements the opportunity was taken to compare the EDU measurements performed in 
SSDIF to those taken previously at Marshall Space Flight Center’s XRCF (X-Ray Cryogenic Facility).  XRCF 
measurements were taken at ambient temperature but under vacuum in a cryogenic chamber.  This comparison is used as 
a rough cross-check of previous results and also to give us confidence in the SSDIF results.  Results shown in figure 6 
confirm that SSDIF measurements closely match those taken at the XRCF.  Results of this comparison are expected to 
be higher than a single facility reproducibility measurement since additional errors must be considered such as the use of 
two different CGHs, a different thermal environment, effects of the XRCF cryo chamber window, and XRCF vacuum 
chamber effects.  While we back out these measurement perturbations to the level we know them, their uncertainties will 
add to the expected differences in the comparison. The measured figure delta of 12.6 nm rms is consistent with the 
XRCF ambient metrology5,6 figure uncertainty of approximately 9 nm rms and the SSDIF uncertainty of closer to 10 to 
12 nm rms.  The astigmatism comparison, on the other hand, is a little higher than we would like.   However, this is not 
completely unexpected given the likely thermal air effects on the SSDIF measurements due to the test setup position 
right next to the HEPA air outlet wall.  To verify this is the cause of the astigmatism difference we will attempt to repeat 
this comparison once the EDU is moved out to the center of the SSDIF cleanroom. 

 
     Figure 6:  Difference between SSDIF and XRCF surface figure measurements. 

4. DYNAMIC MEASUREMENTS RESULTS 
The objective of the dynamics test was to determine if a methodology could be developed with sufficient sensitivity to 
detect changes in the mechanical configuration in the before and after states of the OTE as it goes through acoustic and 
vibration testing. Transfer functions represent a process of converting an input signal to an output observation. If the test 
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SUMMARY 

We have established a capability to take accurate and repeatable PMSA surface figure measurements in the SSDIF. 
Static type workmanship testing at the PMSA level is possible and enabled by improved temperature stability in the 
SSDIF. A High speed interferometer (HSI) was developed to allow dynamic type testing of PMSAs for workmanship. 
HSI dynamic surface measurements were obtained successfully, demonstrating the capability to observe structural 
changes in the structure holding the PMSA. Dynamics testing will be used for diagnostics of the structural conditions of 
the OTIS and the measurements may help build confidence in telescope and OTIS dynamics models. Data processing is 
a challenge due to the large volumes of data. This requires large amounts of storage space and computing power. We are 
developing diagnostics criteria to determine the level of significance of any noted changes between before and after vibe 
and acoustics.  

REFERENCES 

[1] Sabelhaus, P., Decker, J., “An Overview of the James Webb Space Telescope (JWST) Project”, Proceedings of SPIE, 
Vol. 5487, p 550-563 (2004). 

[2] Atkinson, C.,  Texter, S., Hellekson, R., Patton,  K., Keski-Kuha, R., Feinberg, L., ”Status of the JWST Optical 
Teles, cope Element”, Proceedings of SPIE, Vol. 6265, 62650T (2006). 

[3] Feinberg, L.D, Clampin, M., Keski-Kuha, R., Atkinson, C., Texter, S. “James Webb Space Telescope Optical                         
Element Development History and Results”, Proc. SPIE 8442, (2012). 
 
[4]  Atkinson, C, Texter, S., Keski-Kuha R., Feinberg L., “Status of the JWST Optical Telescope Element”, Proc SPIE 
8442, (2012). 
 
[5]  4D Technology, in Tucson, Arizona, 4dtechnology.com. 

[6] Hadaway,  J. B, Chaney, D.M,  Carey, L. M, “The optical metrology system for cryogenic testing of the JWST 
primary mirror segments”, Proc. SPIE 8126, Optical Manufacturing and Testing IX, 81260P (September 26, 2011). 
 
[7]  Chaney, D. M,  Hadaway, J. B, Lewis, J., Gallagher, B., Brown, B., “Cryogenic performance of the JWST primary 
mirror segment engineering development unit”, Proc. SPIE. 8150, Cryogenic Optical Systems and Instruments XIII, 
815008. (September 08, 2011). 
 
[8]  B. Saif, M. Bluth, P. Greenfield, W. Hack, B. Eegholm, P. Blake, R. Keski-Kuha, L. Feinberg, and J. W. Arenberg, 
“Measurement of large cryogenic structures using a spatially phase-shifted digital speckle pattern interferometer”, 
Applied Optics, Vol. 47, Issue 6, pp. 737-745 (2008). 

 
 

Proc. of SPIE Vol. 9143  91430C-11

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/25/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx


